
Advanced Evolutionary 
Algorithms: An Introduction 
Luis Martí Orosa 
LIRA/DEE/PUC-Rio 
 
 



Why we (must) study AI? 



Intelligence defines us… 
…and it would be “great” to have 
machines that share that feature. 



Inspired by nature 

• Neural networks. 
• Genetic and evolutionary algorithms. 
• Swarm-based approaches. 
• Artificial immune systems 
• Ants/bees (and other bugs) colonies and 

emergent behaviors. 

• Etc… 



Nature-inspired metaheuristics 

Metaheuristics 

Inspiration 
on nature 

Optimization 

Machine 
Learning 



Origin 

•  Throughout history we have been fascinated with life. 
•  The origin the explanation of life is present in ancient 

texts.  
•  In “western” countries we have an Abrahamic tradition. 
•  Life has been created at a given time with a purpose. 
•  The purpose of life has to do with the human beings. 
•  Everything in nature (and therefore life) is ruled by a 

“supreme entity”. 

… but fossils were discovered. 



Converging schools of thought 

Jean-Baptiste Lamarck 
•  Species descend one from 

other. 
•  Characteristics acquired during 

life are passed to offspring. 
Erasmus Darwin 
•  Organic evolution (similar to 

Lamarck). 
•  Introduces the notion of 

competition for resources and 
matting. 

Rev. Thomas Robert Malthus. 



Charles Darwin in the Beagle 

• During the trip he focused in geology. 
•  Structure and distribution of coral reefs (1842) 



Conclusions not from the trip 

Ornithology 



Alfred Rusell Wallace 

• While Darwin was busy “in 
his garden”, Wallace 
(1823-1913) reached to the 
same conclusions 
•  He was in the Malay Islands. 
•  Derived the theory of evolution 

from Malthaus self-regulation of 
human population studies. 

•  In 1858 Darwin and Wallace 
published together their 
theory. 



The Origin of Species […] 



Theories derived 

1.  Evolution.  
2. Common ancestors.  
3. Multiplication of 

species. 
4. Gradualism.  
5. Natural selection. 

Darwin was a trending 
topic!  



Darwin was not the only one 



Optimization 



Optimization 

A key subject: 
• Computer Science 
• Artificial Intelligence 
• Operations Research 
• Engineering 
• … 

To optimize is an imprecise term that 
essentially means “make better” 



Optimization 
• “The process of finding the best solution for 

a given optimization problem with a given 
resource and temporal budget.” 
• Optimization problem: 
• Has a number of feaseble solutions. 
• There is a clear notion of quality of 

solutions. 
• The best solution: global optimum 



“Hard” and “easy” problems 

• Tratable: if there is an algorithm that solves 
it polinomial time. 
• Intratable (hard): if there is no algorithm 

that solves the problem in polinomial time, 
NP problems. 



Problemas de Optimización 

• We are interested in “hard problems” 
• Not warrantied that the solution can be 

found. 
• Properties of the problem is unknown. 
• We need metaheuristics: 
• “Reduced” computational complexity. 
• Do not ensure convergence to the global 

optimum. 



Optimization problems 



Classes of problems and solvers 

• Optimization problems: 
• Combinatorial vs numerical 
• Single vs multi-objective 
• Algorithms: 
• Exact: 
•  Linear programming 
• Dynamic programming 
•  “Branch-and-bound” 

• Approximated or (meta)heuristic 



Iterative Stochastic Methods 

1.  Start: 
•  Generate and evaluate an initial collection of 

candidate solutions, S. 
2.  Production: 
•  Select elements of S. Produce and evaluate a new set 

of candidate solutions S’ by means of modifications 
of the selected elements.  

3.  Replacement: 
•  Replace some elements of S with some elements of S’ 

and return to 2. 



Why are these methods used? 

• Easy to explain and implement. 
• A few lines of pseudocode describe the 

essential elements of most of these algorithms.  
• They are multi-purpose. 
• Do not have strong a priori requirements. 
• Proven success. 
• Easy to adapt to particular problems with 

problem dependent (local) methods. 



Montecarlo search 

t = 0; 
result = createNewSolution(); 
evaluate(result); 
while notFinished() do 

a = createNewSolution(); 
evaluate(a); 
if a isBetterThan result then 
result = a; 

 t = t+1; 
end_while 



Hill-Climber 

t = 0; 
result = createNewSolution(); 
evaluate(result); 
while notFinished() do 

a = clone(result); 
mutate(a); 
evaluate(a); 
if a isBetterThan result then 
result = a; 

 t = t+1; 
end_while 



Sample problem Montecarlo/H.C. 

• Only one (global) optimum. 



Local optima 

Repeat the algorithm with different 
initializations. 



Nature-inspired 
methods 



AI/Machine Learning 

Clustering 
 

Neural networks 
 

Decision Trees 
 

Bayesian 
learning 

 

Nature-inspired  
heuristics 

Neural networks 
 

Unsupervised 

Supervised 

Explanation-based 
 learning 

 

Program Synthesis 
 

Analogy 

Deductive 

Inductive 
Learning 



Metaheuristics and ML 

Machine 
Learning Metaheuristics 

Machine learning approaches exploit  
metaheuristics and viceversa. 



Genetic 
Algorithms 

Evolutionary 
Strategies Differential 

Evolution 

Genetic 
Programming 

Artificial Life 

Estimation of 
Distribution 
Algorithms 

Nature-inspired metaheuristics 

Nature-
inspired 

heuristics 

Inspiration 
on nature 

Optimization 

Machine 
Learning 

… and many more! 



 Nature’s optimization algorithm? 

•  Feasible solutions are represented as a string (ADN). 
•  Populations of solutions. 
•  Evaluates every solution (individual) and eliminates 

the worst.  
• Natural selection thanks to the survival of the fittest. 
• New population combines surviving individuals: 
• Crossover. 
• Mutation. 

• Repetition and lots of time. 



Evolutionary computing 

• Computational simulation of the processes of 
evolution and natural selection. 
• Mainly inspired by the theory of evolution. 
• Require little information of the problem 
• General purpose 
• Can contain/cooperate with other 

methodologies 
• Can be used in an “interactive mode”. 
•  Inherent parallelism. 
• Robust with respect to data. 



Aplications of EC 

• As an engineering tool, for finding solutions in 
optimization problems. 
• Combinatorial and numerical optimization. 
• Planning and control 
•  Engineering design 
• Data mining and machine learning applications. 

• As a science tool 
•  Simulation  of real-world phenomena: artificial 

life, cellular automata, directed evolution, etc. 



Search 

•  Search space: set of all possible solutions. 
•  Its size is an indicator of problem complexity. 

•  Crossover operator: combines characteristics of two or 
more individuals – local search. 
•  Mutation: generates new individuals with different 

characteristics – global search.  
•  Together they implement a pseudo-random walk: 
•  Random, as operators are not deterministic. 
•  Directed; as selection is controlled by the fitness 

function that tends to improve the quality of solutions. 



Genetic Algorithms 

•  John Holland, 1960s 
•  “Adaptation in natural and 

artificial systems”, 1975. 



Genetic Algorithm process 

1000101 

0110100 

.... 

0011010 

Current 

Generate a  
random  

population 

1 

5 

2 

Compute 
fitness 
values 

1000101 

0011010 

.... 

1011110 

Intermedium 

3 
3 

3 

Selection 
operator 

0000101 

0110110 

.... 

1111010 

New 

4 4 

Crossover 
and 

mutation 

Replacement 



Using GAs 

• Modeling the problem 
1.  Decide how to encode information. 
2.  Create fitness function. 

- This is a key part! - 

• Configure GAs 
1.  Matting selection and replacement 

selection. 
2.  Type of crossover and mutation. 
3.  Parameters 



Selection Schemes 

•  stochastic sampling 
•  roulette wheel selection 
•  spin wheel N times 

•  stochastic universal sampling 
•  roulette wheel selection 
•  single spin, wheel has N equally 
   spaced markers 

•  tournament selection 
•  choose k candidates at random with 
uniform probability 
•  pick best one for reproduction 

Roulette wheel selection 
•  Proportional to fitness or ranking. 

58

15
4

7



Crossover 

1 0 1 0 0 1 0 0 

0 0 1 1 0 1 1 1 

1 0 1 1 0 1 1 1 

0 0 1 0 0 1 0 0 

P1 

P2 

D1 

D2 

1 0 1 0 0 1 0 0 

0 0 1 1 0 1 1 1 

1 0 1 

1 

0 1 1 

1 0 0 1 

0 

0 1 0 

0 P1 

P2 

D1 

D2 

■   1 point cross-over 

■   2-points cross-over 



Mutation 

• Every gene is examined. 
• An allele is mutated with a low 

probability, pm (0.001-0.1)% 

1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 P1 P’1 



GAs at work 

( ) ( ) ( )( ) ( ) ( )( )222222 15312

3
1

5
1013, yxyxyx eeyxxexyxfz ++−+−++− −⎟

⎠

⎞
⎜
⎝

⎛ −−−−==



GAs at work 

• Population as iterations advance 

42 

■   t = 0 ■   t = 5 ■   t=10 



Advanced GAs 

• Diploid crossover. 
• Multi-objetive approaches. 
• Knowledge-based methods. 
• Multiple populations 
• Coevolution 
• Parallelization 

http://boxcar2d.com/ 



Evolutionary 
Strategies 



Evolutionary Strategies 

•  Proposed in the 60s by Rechenberg and Schwefel.  
•  Method of parametric (numeric) optimization. 
•  Only mutation, with self-adaptation. 
•  Classes:  
•  Simple EE (population of two) 
•  Multiple EE (more elements) 

•  Characteristics 
•  Fast 
•  Solid theoretical foundation 
•  Good results in numerical optimization. 



Initial steps 

• Airfoil profile 



ES technical summary tableau 

Representation Real-valued vectors 

Recombination Discrete or intermediary 

Mutation Gaussian perturbation 

Parent selection Uniform random 

Survivor selection (µ,λ) or (µ+λ) 

Specialty Self-adaptation of mutation 
step sizes 



Simple (1,1) Pseudocode 

Set t = 0 
Create initial point xt = 〈 x1t,…,xnt 〉 
repeat  
Draw zi from a normal distr. for all i = 
1,…,n 
yit = xit + zi   
IF f(xt) < f(yt) THEN  

xt+1 = xt 

ELSE  
xt+1 = yt  

END_IF 
Set t = t+1 

until endCondition() 



Representation 

• Chromosomes consist of three parts: 
• Object variables: x1,…,xn 
• Strategy parameters: 
• Mutation step sizes: σ1,…,σnσ 

• Rotation angles: α1,…, αnα 

• Not every component is always present 

• Full size: 〈 x1,…,xn, σ1,…,σn 
,α1,…, αk 

〉  

• where k = n(n-1)/2 (no. of i,j pairs)
 



Mutation 

• Main mechanism: changing value by 
adding random noise drawn from normal 
distribution 
• x’i = xi + N(0,σ) 
• σ is part of the chromosome 〈 x1,…,xn, σ 〉  
• σ is also mutated into σ’ 
• Thus: mutation step size σ is coevolving 

with the solution x 



Mutate σ first 

• Net mutation effect: 〈 x, σ 〉 à 〈 x’, σ’ 〉 
• Order is important:  
• first σ à σ’ (see later how) 
• then x à x’ = x + N(0,σ’) 
• Rationale: new 〈 x’ ,σ’ 〉 is evaluated twice 
• Primary: x’ is good if f(x’) is good  
• Secondary: σ’ is good if the x’ it created is 

good 
• Reversing order would not work 



Mutation case 1:���
Uncorrelated mutation with one σ 
• Chromosomes: 〈 x1,…,xn, σ 〉  
• σ’ = σ • exp(τ • N(0,1)) 
• x’i = xi + σ’ • N(0,1) 
• Typically the “learning rate” τ ∝ 1/ n½ 

• And we have a boundary rule σ’ < ε0 ⇒ σ’ 
= ε0 



Mutation case 2:���
Uncorrelated mutation with n σ’s 
• Chromosomes: 〈 x1,…,xn, σ1,…, σn 〉 
• σ’i = σi • exp(τ’ • N(0,1) + τ • Ni (0,1)) 
• x’i = xi + σ’i • Ni (0,1) 
• Two learning rate parmeters: 
• τ’ overall learning rate 
• τ coordinate wise learning rate 
• τ ∝ 1/(2 n)½  and τ ∝ 1/(2 n½) ½ 

• And σi’ < ε0 ⇒ σi’ = ε0 



Mutation case 3:���
Correlated mutations  
• Chromosomes: 〈 x1,…,xn, σ1,…, σn ,α1,…, 
αk 〉 
• where k = n • (n-1)/2  
• and the covariance matrix C is defined as: 
• cii = σi

2 

• cij = 0 if i and j are not correlated   

• cij = ½  
•
 ( σi

2  -  σj
2 ) •

 tan(2 αij) if i and j are 
correlated 

• Note the numbering / indices of the α‘s  



Correlated mutations cont’d 

The mutation mechanism is then: 
•  σ’i = σi • exp(τ’ • N(0,1) + τ • Ni (0,1)) 
•  α’j = αj + β • N (0,1) 

•  x ’ = x  + N(0,C’) 
•  x stands for the vector 〈 x1,…,xn 〉 
•  C’  is the covariance matrix C after mutation of the α values 

•  τ ∝ 1/(2 n)½  and τ ∝ 1/(2 n½) ½  and β ≈ 5°  
•  σi’ < ε0 ⇒ σi’ = ε0 and   

•  | α’j | > π ⇒ α’j = α’j - 2 π sign(α’j) 



Recombination 

• Creates one child 
• Acts per variable / position by either 
• Averaging parental values, or 
• Selecting one of the parental values 
• From two or more parents by either: 
• Using two selected parents to make a 

child. 
• Selecting two parents for each position. 



Names of recombinations  

Two fixed parents 
Two parents 
selected for each i 

zi = (xi + yi)/2  Local intermediary 
Global 
intermediary 

zi is xi or yi chosen 
randomly  

Local  
discrete 

Global  
discrete 



 (µ+λ) Evolutionary Strategies 

µ-parents: µ (35) 

Population: n individuals (100) Evaluation 

Selection 

λ-offspring: λ (27) 

Mutation and  
recombination 

µ + λ individuals (62) 

Evaluation 

µ best (35) 

Selection 

Replacement 



Estrategias Evolutivas ���
Tipo (µ, λ) 

µ-parent: µ (35) 

Population: n individuals (100) Evaluation 

Selection 

λ-offspring: λ (47) 

Mutation and  
recombination 

Replacement 

µ best (35) 

Evaluation 

Selection 

λ ≥ µ 



Genetic 
Programming 



GP’S Flow 
Diagram 



C program 

int foo (int time) 
{ 
   int temp1, temp2; 
   if (time > 10) 
       temp1 = 3; 
   else 
       temp1 = 4; 
   temp2 = temp1 + 1 + 2; 
   return (temp2); 
} 

time result 

0 6 

1 6 

2 6 

3 6 

4 6 

5 6 

6 6 

7 6 

8 6 

9 6 

10 6 

11 7 

12 7 



Tree representation 

+ 

1 2 IF 

> 

TIME 10 

3 4 

(+ 1 2 (IF (> TIME 10) 3 4)) 
 



Mutation example 



Crossover 



Fitness 

• How to measure the quality of a problem? 
• Number of errors, impact of the errors, 

computing time, computational 
complexity, etc. 

• Bloating. 



Our experience with GP 

• I directed an 
undergraduate thesis 
on GP. 
• UC3M GECCO 2009 

GP Rubik's cube team. 
• We were the only 

participants! 



Colonia de 
Hormigas 



More inspiration on nature 

• Ant colony optimization. 

Food 

paths 

Nest 



Ant colony in action 



More formally 

•  For a connected graph G=(N,A) the ant colony 
find the shortest path between two nodes. 
• There is an “artificial pheromone footprint” 

associated with every arc in A. 
• Ants can “read” and “write” that footprint. 
• Highly transited arcs have a higher footprint. 



Final Remarks 



Final remarks 

• Differential evolution. 
• Estimation of distribution algorithms. 
• Particle swarms. 
• These approaches have seen many 

important practical results. 
• Inspiration from nature does not stops here! 



Homework! 

• Read: 
• Von Zuben, Fernando J. "Computação 

evolutiva: uma abordagem pragmática.” 
• Start getting familiarized with IPython, 

numpy, scipy, scikit.learn, inspyred and 
DEAP.  


