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Abstract—There are some issues with multi–objective esti-
mation of distribution algorithms (MOEDAs) that have been
undermining their performance when dealing with problems with
many objectives. In this paper we examine the model–building
issue related to estimation of distribution algorithms (EDAs)
and show that some of their, as yet overlooked, characteristics
render most current MOEDAs unviable in the presence of
many objectives. First, we present model–building as a problem
with particular requirements and explain why some current
approaches cannot properly deal with some of these conditions.
Then, we discuss the strategies proposed for adapting EDAs
to this problem. To validate our working hypothesis, we carry
out an experimental study comparing different model–building
algorithms. In the final part of the paper, we provide an in–depth
discussion on viable alternatives to overcome the limitations of
current MOEDAs in many–objective optimization.

Index Terms—Estimation of distribution algorithms, multi–
objective optimization, model–building algorithms, many–
objective problems, diversity loss.

I. INTRODUCTION

THE multi–objective optimization problem (MOP) can be
expressed as the problem in which a set of objective

functions f1(x), . . . , fM (x) should be jointly optimized;

min F (x) = 〈f1(x), . . . , fM (x)〉 , x ∈ D , (1)

where D is known as the decision space. The image set,
O, resulting from the projection F : D → O is called the
objective space.

In this class of problems the optimizer must find one or
more feasible solutions that jointly minimize (or maximize)
the objective functions. Therefore, the solution to this type
of problem is a set of trade–off points. The adequacy of a
solution can be expressed in terms of the Pareto dominance
relation [1]. The solution of (1) is the Pareto–optimal set, D∗.
This is the subset of D that contains elements that are not
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dominated by other elements of D. Its image in the objective
space is called the Pareto–optimal front, O∗.

A broad range of approaches have been used to address
MOPs [2], [3]. Of these, multi-objective evolutionary algo-
rithms (MOEAs) have been found to be a very competitive
approach in a wide variety of application domains. Their main
advantages are ease of use and lower susceptibility (compared
with traditional mathematical programming techniques for
multi-objective optimization [2]) to the shape or continuity
of the Pareto front.

There is a class of MOPs that are particularly appealing
because of their inherent complexity: the so–called many–
objective problems [4]. These are problems with a relatively
large number of objectives (normally, four or more). Although
somewhat counterintuitive and hard to visualize for a human
decision maker, these problems are not uncommon in real–life
engineering practice, such as, for example, aircraft design [5],
land use planning [6], optimization of trackers for air traffic
management and surveillance systems [7], [8], bridge design
[9] and optical lens design, among others (see [10] for a survey
on these problems).

The poor scalability of traditional MOEAs in these prob-
lems has triggered a sizeable amount of research, aiming
to provide alternative approaches that can properly handle
many–objective problems and perform reasonably. Estimation
of distribution algorithms (EDAs) are one such approach [11]–
[15]. EDAs have been hailed as a paradigm shift in evolu-
tionary computation. They propose an alternative approach
that creates a model of the population instead of applying
evolutionary operators. This model is then used to synthesize
new individuals. Probably because of their success in single–
objective optimization, EDAs have been extended to the multi–
objective optimization problem domain, leading to the so-
called multi–objective EDAs (MOEDAs) [16].

Although MOEDAs have yielded some encouraging results,
their introduction has not lived up to a priori expectations.
This can be attributed to a number of different causes, some
of which, although already present in single–objective EDAs,
are more obvious in MOEDAs, whereas others are derived
from some key components taken from traditional MOEAs. An
analysis of this issue led us to distinguish a number of short-
comings, including: weaknesses derived from current multi–
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objective fitness assignment strategies; the incorrect treatment
of population outliers; the loss of population diversity, and too
much computational effort being spent on finding an optimal
population model.

Whereas the first issue is shared with other multi–objective
evolutionary approaches, the others are peculiar to MOEDAs.
A number of works have dealt with the last three issues
listed above, particularly with loss of diversity. Nevertheless,
the community has failed to acknowledge that the underlying
cause for all those problems could, perhaps, be traced back to
the algorithms used for model–building in EDAs.

In this paper we examine the model–building issue of
EDAs and show that some its characteristics, which have been
disregarded so far, render most current approaches unviable.
This analysis includes a theoretical discussion of the issue, as
well as an experimental study introducing a candidate solution,
as well as some guidelines for addressing this problem.

It is hard to gain a rigorous understanding of the state
of the art in MOEDA model building since each model
builder is embedded within a different MOEDA framework.
In order to comprehend the advantages and shortcomings of
each algorithm, then, they should be tested under similar
conditions and separated from their corresponding MOEDA.
For this reason, we assess, in this paper, some of the main
machine learning algorithms currently used or suitable for
model–building in a controlled environment and under identi-
cal conditions. We propose a general MOEDA framework in
with each model–building algorithm will be embedded. This
framework guarantees the direct comparison of the algorithms
and allows a proper validation of their performance.

The main contributions of this paper can be summarized as
follows:
• A presentation of model–building as a problem with

particular requirements and an overview of the reasons
why some current approaches cannot properly deal with
these requirements.

• A discussion of the strategies proposed for adapting
current approaches to the problem.

• An experimental study that compares different model–
building algorithms aimed at demonstrating our working
hypothesis.

• An in–depth discussion of viable alternatives to overcome
this issue.

The remainder of this paper is organized as follows. In
Section II, we provide an introduction to MOEDAs. Then, in
Section III, we deal with the model–building problem, its prop-
erties and how it has been approached by the main MOEDAs
now in use. In Section IV, we describe the model–building
algorithms under analysis and the MOEDA framework we
propose for our empirical tests. Then, a set of experiments are
performed, using community–accepted, complex and scalable
test problems with a gradual increase in the number of objec-
tive functions. In Section V we put forward a set of guidelines
derived from the previous discussions and experiments that
could be used for overcoming the current situation and could
lead to the formulation of “second generation” model builders.
Note that the results of this research, although focused on
multi–objective optimization problems, can be extrapolated to

single–objective EDAs. Finally, in Section VI, we put forward
some concluding remarks and lines for future work.

II. MULTI–OBJECTIVE ESTIMATION OF DISTRIBUTION
ALGORITHMS

Estimation of distribution algorithms (EDAs) are
population–based optimization algorithms. Instead of
applying evolutionary operators to the population like other
evolutionary approaches, EDAs build a statistical model of
the most promising subset of the population. This model is
then sampled to produce new individuals that are merged with
the original population following a given substitution policy.
Because of this model–building feature, EDAs have also
been called probabilistic–model–building genetic algorithms
(PMBGAs) [17], [18]. Iterated density estimation evolutionary
algorithms (IDEAs) introduced a similar framework to EDAs
[19].

The introduction of machine learning techniques implies
that these new algorithms lose the straightforward biological
inspiration of their predecessors. Nonetheless, they gain the
capacity of scalably solving many challenging problems, in
some cases significantly outperforming standard EAs and other
optimization techniques.

Model–building processes have evolved, too. Early ap-
proaches assumed that the different features of the decision
variable space were independent. Subsequent methods started
to deal with interactions among the decision variables, first
in pair–wise fashion and later in a generalized manner, using
n–ary dependencies.

Multi–objective EDAs (MOEDAs) [16] are the extensions of
EDAs to the multi–objective domain. Most MOEDAs consist
of a modification of existing EDAs whose fitness assignment
function is substituted by one taken from an existing MOEA.

Most MOEDAs can be grouped in terms of their model–
building algorithm. We will now give a brief description of
MOEDAs, as this discussion is essential for our analysis. Note,
however, that a comprehensive survey of current MOEDAs is
beyond the scope of this paper.

A. Graphical algorithm MOEDAs

One of the most common foundations for MOEDAs is a
set of single–objective EDAs that build the population model
using graphical models [20]. Most single–objective EDAs
in that class rely on Bayesian networks [21]. This is the
case of the Bayesian optimization algorithm (BOA) [22], the
estimation of Bayesian network algorithm (EBNA) [23] and
the learning factorized distribution algorithm (LFDA) [24].
Of these, BOA was the algorithm extrapolated to the multi–
objective domain.

A Bayesian network is a probabilistic graphical model
that represents a set of variables and their probabilistic
(in)dependencies. They are directed acyclic graphs whose
nodes represent variables, and whose arcs encode conditional
independencies between the variables. Nodes can represent
any kind of variable; either a measured parameter, a latent
variable or a hypothesis.
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The exhaustive synthesis of a Bayesian network from the
algorithm’s population is an NP–hard problem. Therefore,
the intention behind the former approaches is to provide
heuristics for building a network of reasonable computational
complexity. BOA uses the so–called K2 metric, based on
the Bayesian Dirichlet metric [25], to assess the quality of
a network. A simple greedy algorithm is used to add edges in
each iteration.

BOA-based MOEDAs combine the Bayesian model–
building scheme with an already existing Pareto–based fitness
assignment. This is the case of the multi–objective BOA
(mBOA) [26] that exploits the fitness assignment used in
NSGA–II. Another algorithm based on hierarchical BOA
(hBOA) [27]–[29], called mhBOA [30], [31], also uses the
same form of fitness assignment but introduces clustering in
the objective function space. A similar idea is proposed in
[32], [33], where the mixed BOA (mBOA) [34] is combined
with the SPEA2 selection scheme to form the multi–objective
mBOA (mmBOA).

The multi–objective real BOA (MrBOA) [35] also extends
a preexisting EDA, namely, the real BOA (rBOA) [36].
RBOA performs a proper problem decomposition by means
of a Bayesian factorization and probabilistic building–block
crossover by employing mixture models at the level of sub-
problems. MrBOA combines the fitness assignment of NSGA–
II with rBOA.

For the following experiments we followed the model–
building strategy used by rBOA [36], that is, apply a simple
incremental greedy approach to construct the network. It adds
edges to an initially fully disconnected graph. Each edge is
added in order to improve, at each step, a particular formula-
tion of the Bayesian information criterion (BIC) [37]. Then,
the conditional probabilities that take part of the Bayesian
factorization are computed for each disconnected subgraph.

Note, finally, that Bayesian networks are not the only graph-
ical model suitable for model–building. Other approaches,
in particular Markov random fields [38], have also been
applied in single–objective EDAs [39]–[41]. To the best of
our knowledge, however, these approaches have not yet been
extended to multi–objective problems.

B. Mixture distribution MOEDAs
Another approach to modeling the subset with the best

population elements is to apply a distribution mixture ap-
proach. In a series of papers, Bosman and Thierens [42]–[47]
proposed several variants of their multi–objective mixture–
based iterated density estimation algorithm (MIDEA). They
are based on their IDEA framework. Bosman and Thierens
proposed a novel Pareto–based and diversity–preserving fitness
assignment function. The model construction is inherited from
the single–objective version. The proposed MIDEAs consid-
ered several types of probabilistic models for both discrete
and continuous problems. A mixture of univariate distributions
and a mixture of tree distributions were used for discrete
variables. A mixture of univariate Gaussian models and a
mixture of multivariate Gaussian factorizations were applied
for continuous variables. An adaptive clustering method was
used to determine the capacity required to model a population.

MIDEAs do not place any constraints on the location of
the centers of the distributions. Consequently, the MIDEA
clustering mechanism does not provide a specific mechanism
to ensure equal coverage of the Pareto–optimal front if the
number of representatives in some parts of the front is much
larger than the number of representatives in some other parts.

The clustering algorithms applied for this task include the
randomized leader algorithm [48], the k–means algorithm [49]
and the expectation maximization algorithm [50].

The leader algorithm [48] is a fast and simple partitioning
algorithm that was first used in the EDA context as part of
the IDEA framework. Its use is particularly appropriate in
situations where the overhead introduced by the clustering
algorithm must remain as low as possible. Besides its small
computational footprint, this algorithm has the additional
advantage of not having to explicitly specify in advance how
many partitions should be discovered. On the other hand, the
drawbacks of the leader algorithm are that it is very sensitive to
the ordering of the samples and that the values of its thresholds
must be guessed a priori and are problem dependent.

The algorithm goes over the data set exactly once. The
distances from each sample to each of the cluster centroids are
determined. Then, the cluster whose distance is smallest and
below a given distance threshold, ρLd, is selected. If no such
cluster can be found, a new one is created, containing just this
sample. Once the number of samples in a cluster has exceeded
the sample count threshold ρLc, the leader is substituted by the
mean of the cluster members. The mean of a cluster changes
whenever a sample is added to that cluster. After clustering,
a Gaussian mixture is constructed, as described for the naı̈ve
MIDEA [47]. This way the model can be sampled in order to
produce new elements.

The k–means algorithm [49] is a well–known machine
learning method. It constructs k partitions of the input space.
To do this, it uses partition centroids. First, the k centroids are
initialized from randomly selected samples. At each iteration,
each sample is assigned to the nearest partition based on
the distance to the partition centroid. Once all of the points
have been assigned, the means of the partitions are updated.
The algorithm iterates until the centroids no longer change
significantly. An important issue in this algorithm is how to
set parameter k such that partitioning is adequate. Parameter
setting requires some experience. In the context of MIDEAs
[51] the approach followed is to increment k and calculate the
negative log–likelihood of the mixture probability distribution
after estimating a factorized probability distribution in each
cluster. If the resulting mixture probability distribution is
significantly better than for a smaller value of k, this value
is accepted and the search continues. As in the previous
case, after the clusters are determined, a Gaussian mixture
is estimated for sampling purposes.

The expectation maximization (EM) algorithm [50] is an
iterative approach to computing a maximum likelihood esti-
mate. EM uses the difference in the negative log–likelihood of
the estimated probability distribution between subsequent iter-
ations in order to derive the hidden parameters. In a clustering
context, EM is used to get an approximation of the maximum
likelihood estimation of a mixture probability distribution. The
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number of components in the mixture probability distribution
is usually chosen beforehand. This choice is similar to the
choice of the number of partitions when using a clustering
approach to the estimation of a mixture probability distribution
from data. In this case a similar approach to the one discussed
for k–means is applied.

MIDEAs are not the only mixture–based algorithms. The
multi–objective Parzen EDA (MOPED) [52], [53] puts forward
a similar mixture–based approach. MOPED uses the NSGA–II
ranking method and the Parzen estimator [54] to approximate
the probability density of solutions lying on the Pareto front.
The proposed algorithm has been applied to different types of
test case problems, and results show a good performance of
the overall optimization procedure in terms of the total number
of objective function evaluations.

The multi–objective neural EDA (MONEDA) [55] is also
a mixture–based MOEDA. It was devised to deal with the
model–building issue that will be discussed in Section V. It
is based on a modified growing neural gas (GNG) network
[56]. GNG networks have been previously presented as good
candidates for dealing with the model–building issue [55], [57]
because of their known sensitivity to outliers [58].

GNG networks are unsupervised intrinsic self–organizing
neural networks based on the neural gas model [59]. The
network grows to adapt itself automatically to the complexity
of the dataset being modeled. It has a fast convergence to
low distortion errors and these errors are better than those
yielded by “standard” algorithms, such as k–means clustering,
maximum–entropy clustering and Kohonen’s self–organizing
feature maps [59].

We put forward the model–building growing neural gas
(MB–GNG) [55] network with the aim of adapting GNG to the
model–building task. In particular, MB–GNG incorporates a
cluster repulsion term to GNG’s adaptation rule that promotes
search and diversity.

C. Covariance matrix adaptation evolution strategies

Covariance matrix adaptation evolution strategies (CMA–
ES) [60], [61] have been shown to yield many outstanding
results in comparative studies [62]–[64]. CMA–ES consists of
a method for updating the covariance matrix of the multivariate
normal mutation distribution used in an evolution strategy
[65]. They can be viewed as an EDA, as new individuals
are sampled according to the mutation distribution. The co-
variance matrix describes the pairwise dependencies between
the variables in the distribution. Adaptation of the covariance
matrix is equivalent to learning a second-order model of the
underlying objective function. CMA–ES has been extrapolated
to the multi–objective domain [66].

D. Other approaches

Other MOEDAs have been proposed in order to take ad-
vantage of the mathematical properties of the Pareto–optimal
front. For example, the regularity model–based multi–objective
estimation of distribution algorithm (RM–MEDA) [67], [68]
is based on the regularity property derived from the Karush–
Kuhn–Tucker condition. This means that, subject to certain

constraints, the Pareto–optimal set, D∗, of a continuous multi–
objective optimization problem can be induced to be a piece-
wise continuous (M − 1)–dimensional manifold, where M is
the number of objectives [2], [69].

At each iteration, RM–MEDA models the promising area
of the decision space using a probability distribution whose
centroid is a (M − 1)–dimensional piecewise continuous
manifold. The local principal component analysis algorithm
[70] is used to build this model. New trial solutions are
sampled from the model thus built. Again, this model adopts
the fitness assignment mechanism proposed by NSGA–II. The
main drawback of this algorithm is its high computational
complexity. This is an obstacle to its application in problems
with many objective functions.

III. UNDERSTANDING MODEL–BUILDING IN THE
MULTI–OBJECTIVE CASE

Regardless of the many efforts at providing usable model–
building methods for EDAs, the nature of the problem itself
has received relatively little attention. In spite of the succession
of gradually improving results of EDAs, one question hangs
over the search for possibilities for further improvement.
Would current statistically sound and robust approaches be
valid for the problem being addressed? Or, in other words,
does the model–building problem have particular demands
that can only be met by custom–made algorithms? Machine
learning and statistical algorithms, although suitable for their
original purpose, might not be that effective in the particular
case of model building.

Generally, such algorithms are off–the–shelf machine learn-
ing methods that were originally intended for other classes of
problems. On the other hand, the model–building problem has
particular requirements that the above methods do not meet
and may even go against. Furthermore, the consequences of
this misunderstanding would be more dramatic when scaling
up the number of objectives, since the situation is made worse
by the implications of the curse of dimensionality [71].

In this paper we argue that the model–building problem has
not been properly identified. For this reason, it has been treated
like other previously existing problems overlooking that fact
that this problem has particular requirements. This matter did
not show up as clearly in single–objective EDAs. Thanks to
the extension to the multi–objective domain this issue has
become more evident, as we will debate in the remainder of
this section.

An analysis of the results yielded by current multi–objective
EDAs and their scalability against the number of objectives
leads to the identification of some issues that could be pre-
venting MOEDAs from getting substantially better results than
other evolutionary approaches. Such issues include:

1) drawbacks derived from current MOEA fitness assign-
ment strategies;

2) incorrect treatment of data outliers;
3) loss of population diversity; and
4) excess of computational effort devoted to finding an

optimal population model.
The first issue is shared by MOEAs, MOEDAs and other

multi–objective evolutionary approaches. It has been shown
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(a) A population at a given iteration according to their Pareto–
optimality and spread.




(b) Selection of model–building population subset with the best
elements of the population.




(c) After model construction, isolated elements, which are the
most relevant elements of the current population, are disregarded.

Figure 1: A graphical example of how standard model–building algorithms fail to take into account outliers.

that, as the number of objectives grow, the fitness assignment
performance starts to degrade as an exponential increase of
the population size is required [4], [72]–[74]. Some alternative
approaches have been proposed to deal with this problem, in-
cluding objective reduction [75]–[78], performance indicator–
based fitness assignment [79]–[84], and hybrid methods [85],
[86]. This topic is an open research area, which is currently
very active within the evolutionary multi-objective optimiza-
tion community.

The remaining three issues have to do only with EDAs and
are the main focus if this work. These issues can be traced back
to the single–objective predecessor of most MOEDAs and its
respective model–building algorithms. The data outliers issue
is a good example of the defective understanding of the nature
of the model–building problem. In machine–learning practice,
outliers are handled as noisy, inconsistent or irrelevant data.
Therefore, outlying data is expected to have little influence on
the model or it is just disregarded. However, this behavior
is not appropriate for model–building. In this case, it is
known beforehand that all elements in the data set should
be taken into account, as they represent newly discovered or
candidate regions of the search space and, therefore, must be

explored. Therefore, these instances should be at least equally
represented by the model and perhaps even reinforced. This
situation is illustrated in Fig. 1. A model–building algorithm
that primes outliers might actually speed up the search process
and lower the rate of the exponential dimension–population
size dependency.

Another weakness of most MOEDAs (and most EDAs, for
that matter) is the loss of population diversity. This is a point
that has already been made, and some proposals for addressing
the issue have been laid out [87]–[89]. This loss of diversity
can be traced back to the above outliers issue of model–
building algorithms. The repetitive application of an algorithm
that disregards outliers tends to generate more individuals in
areas of the search space that are more densely represented.
Although there have been some proposals to circumvent this
problem, we take the view that the ultimate solution is the use
of an adequate algorithm.

The third issue to be dealt with is the computational
resources wasted on finding an optimal description for the
subpopulation being modeled. In the model–building case,
optimal model complexity can be sacrificed in the interests
of a faster algorithm. This is because the only constraint
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is to have a model that is sufficiently, but not necessarily
optimally, complex to correctly represent the data. This is
particularly true when dealing with high–dimensional MOPs,
as, in these cases, there will be large amounts of data to be
repeatedly processed at each iteration. Even so, most current
approaches spend considerable effort on finding optimal model
complexity, using minimum description length [90], structural
risk minimization [91], Bayesian information criterion [37] or
other similar heuristics, as explained in the previous section.

In conclusion, we can deduce that an understanding the
nature of the model–building problem and the application of
suitable algorithms appear to point the way forward in this
area.

IV. PROBLEM STATEMENT

To identify the model–building issue debated above, it is
helpful to devise a comparative experiment that casts light
on the performances of a selected set of model–building
algorithms subject to the same conditions to deal with a group
of complexity-scaling problems. In particular, we deal with a
selection of the Walking Fish Group (WFG) continuous and
scalable test problems set [92], [93].

A MOEDA framework is shared by the model–building
algorithms involved in the tests in order to ensure the com-
parison and reproducibility of the results. Two well–known
MOEAs, the non–dominated sorting genetic algorithm II
(NSGA–II) [94] and the strength Pareto evolutionary algo-
rithm (SPEA2) [95], were also applied as a baseline for the
comparison.

The model–building algorithms involved in the tests were:
• Bayesian networks, as used in MrBOA;
• randomized leader algorithm, k–means algorithm and E–

M algorithm, as described for MIDEAs;
• (1 + λ)–CMA–ES as described in [66]; and
• GNG and its model–building version, MB–GNG.
This assortment of algorithms offers a broad sample of dif-

ferent approaches, ranging from the most statistically rigorous
algorithms, such as Bayesian networks, E–M or CMA–ES, to
others, like the leader algorithm and MB–GNG, that have some
clear shortcomings in the context of their original application
scope. Nevertheless, they can also be assumed to deal with
outlying elements in a more adequate manner.

A. Shared MOEDA framework

A general MOEDA framework must be proposed in order
to assess different model–building algorithms, in particular the
algorithms described in Section II. The model–building algo-
rithms will share this framework. Therefore, such a framework
will provide a testing ground common to all approaches and
we will be able to focus solely on the topic of interest.

Our general MOEDA workflow is similar to other previ-
ously existent algorithms, as illustrated in Fig. 2. It maintains a
population of individuals, Pt, where t is the current iteration. It
starts with a random initial population P0 of npop individuals.
It then proceeds to sort the individuals using the NSGA–II
fitness assignment function [94]. This fitness function was
chosen because it is in widespread use, although we are aware

that better strategies, such as indicator–based options, would
probably yield better results.

The fitness function is used to rank individuals according
their Pareto dominance relations. Individuals with the same
domination rank are then compared using a local crowding
distance. This distance favors individuals that are more isolated
than those residing in crowded regions of the Pareto front.

A set P̂t containing the best dα |Pt|e elements is extracted
from the sorted version of Pt,∣∣∣P̂t

∣∣∣ = dα |Pt|e . (2)

Here α is known as the selection percentile.
The model builder under study is then trained using P̂t as

the training data set. A set of bω |Pt|c new individuals, which
is regulated by the substitution percentile ω, is sampled from
the model. Each of these individuals substitutes an individual
randomly selected from Pt \ P̂t, which is the section of the
population not used for model–building. The output set is
then united with the best elements, P̂t, in order to form the
population of the next iteration Pt+1.

Iterations are repeated until the given stopping criterion is
met. The output of the algorithm is the set of non–dominated
solutions from the final iteration, P∗t .

After some exploratory tests with our EDA, we settled for
α = 0.3 and ω = 0.3.

B. Experimental setup

The problems to be addressed are part of the Walking
Fish Group problem toolkit (WFG) [96]. This is a toolkit for
creating complex synthetic multi–objective test problems that
can be devised to exhibit a given set of target features.

Unlike previous test suites where complexity is embedded
in the problem, a test problem designer using the WFG toolkit
has access to a series of components to control specific test
problem features (e.g., separability, modality, etc.). The WFG
toolkit was used to construct a suite of test problems that
provides a thorough test for optimizers. This set of nine
problems, WFG1–WFG9, are formulated in such manner that
each poses a different type of challenge to multi-objective
optimizers.

The WFG test suite exceeds the functionality of previous
existing test suites. In particular, it includes a number of
problems that exhibit properties not evident in other commonly
used test suites such as the Deb-Thiele-Laumanns-Zitzler
(DTLZ) [97] and the Zitzler-Deb-Thiele (ZDT) [98] test suites.
These differences include: non–separable problems, deceptive
problems, a truly degenerate problem, a mixed shape Pareto
front problem, problems scalable by the number of position–
related parameters, and problems with dependencies between
position– and distance–related parameters. The WFG test
suite provides a better form of assessing the performance of
optimization algorithms on a wide range of different problems.

From the set of nine problems, the test functions WFG4
to WFG9 were selected because of the simple form of their
Pareto–optimal fronts, which lie on the first orthant of a unit
hypersphere. For this reason, the progress of the optimization
process can be determined without having a sampled version
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1: Parameters: npop, α and ω.
2: t← 0.
3: Randomly generate initial population, P0, with npop individuals.
4: repeat
5: Sort Pt individuals with regard to their fitness function values.
6: Extract the first dα |Pt|e elements of the sorted Pt to P̂t.
7: Build model of P̂t.
8: Sample bω |Pt|c new individuals from the model.
9: Substitute randomly selected individuals of Pt \ P̂t with the new individuals to produce P ′t.

10: Pt+1 = P̂t ∪ P ′t.
11: t← t+ 1.
12: until end condition met
13: Determine the set of non–dominated individuals of Pt, P∗t .
14: return P∗t as the algorithm’s solution.

Figure 2: Algorithmic representation of the shared MOEDA.

of the Pareto–optimal front. In particular, we measure the
similarity of the current non–dominated front, PF∗t , to the
Pareto–optimal front as the mean distance of the elements of
PF∗t to the origin of coordinates minus one,

Iprog =

∑
x∈F∗

t

(∑M
m=1 (fm(x)− 1)

2
)0.5

|F∗|
. (3)

For this reason, the local progress of the algorithms can be
easily determined as executions taking place without having
to turn to more computationally expensive options such as
performance indicators.

Even so, assessing the progress of the algorithms in high
dimensions is a complicated matter. To do this, we used
the MGBM multi–objective optimization cumulative stopping
criterion [99], [100]. This criterion combines the measurement
of progress across iterations Iprog with a simplified Kalman
filter that is used for the evidence-gathering process. This
mechanism is able to gauge the progress of the optimization
process at a low computational cost. This makes it suitable for
solving complex or many–objective problems.

Performance indicators are required to gauge and compare
the quality of the solutions yielded by each algorithm. In
these experiments the binary hypervolume indicator [101] was
used for performance assessment1. This indicator gauges how
similar the solution yielded by each algorithm is to the Pareto–
optimal front of the problem. Therefore, it requires an explicit
sampling of that front, which is not viable in problems with
many objectives. To address this issue, we took an approach
similar to the method adopted by the purity performance
indicator [102], [103]. A combined set PF+ is defined as the
union of the solutions obtained from the different algorithms
across all the experiment executions. Õ∗ is then determined
by extracting the non–dominated elements,

x ∈ Õ∗ iff x ∈ PF+ and 6 ∃y ∈ PF+ such that y ≺ x .
(4)

Although this procedure circumvents the problems of per-
forming a direct sampling of the Pareto–optimal front shape

1For the values yielded by other indicators, see the web appendix of this
paper at http://www.giaa.inf.uc3m.es/miembros/lmarti/model-building

function, special precautions should be taken when interpreting
the results. Notice that the algorithm’s performance will be
measured with regard to the set of overall best solutions
and not against the actual Pareto–optimal front. We consider
this to be a valid approach, though, since the intention of
these experiments is to compare the different model–building
algorithms rather than actually solving the problems.

Each problem was configured with 3, 5, 7 and 9 objective
functions. For all cases, the decision space dimension was set
at 15. The experiments were carried out under the PISA ex-
perimental framework [104]. All the algorithms were executed
30 times for each problem/dimension pair.

Statistical hypothesis tests have to be applied to validate
the results of different executions. Different frameworks for
carrying out this task have been already discussed by other
authors (see for example [101], [105], [106]).

In our case, we performed a Kruskal–Wallis test [107]
with the indicator values yielded by each algorithm’s run
for each problem/dimension combination. In context of these
experiments, the null hypothesis for the test was that all
algorithms were equally capable of solving the problem. If
the null hypothesis was rejected, which was the case in all the
experimental instances, the Conover–Inman procedure [108,
pp.288–290] was applied in a pairwise manner to determine
if the results of one algorithm were significantly better than
those of the other. A significance level, α, of 0.05 was used
for all the tests. A similar test framework had been previously
applied to assess similar experiments [109], [110].

Besides measuring how good the solutions output by the
algorithms are, it is also very important to analyze how long
it takes the algorithms to reach the solutions. For these exper-
iments we measured two variables: the number of objective
function evaluations and the number of floating–point opera-
tions carried out by each model–building algorithm. This last
measurement assumes that all floating–point operations have
to do with the optimization process itself. This requirement
can be easily met under experimental conditions. There are
a number of profiling tools that are capable of tracking the
number of floating–point operations that have taken place as
part of a process. For this work, we chose the OProfile program

http://www.giaa.inf.uc3m.es/miembros/lmarti/model-building
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profiling toolkit [111]. As the study also covered NSGA–II and
SPEA2 and they do not perform model building, we measured
the operations dedicated to the application of the evolutionary
operators in their case.

C. Results

As already explained, the scope of the experiments reported
here is to validate or reject the hypotheses stated in Section III.
For this reason, the performance of each algorithm is compared
in terms of both the quality of the solutions that they generate
and their cost in terms of computational resources. Particularly,
we are concerned with the number of floating–point operations
dedicated to the model–building task and with the number of
function evaluations performed.

The first results have to do with the WFG4 problem. WFG4
is a separable and strongly multi–modal problem that, like
the other problems, has a concave Pareto–optimal front. This
front lies on the first orthant of a hypersphere of radius one
located at the origin. The separability property should, in
theory, allow Bayesian networks–based approaches to perform
well, as already reported in [112].

Fig. 3 summarizes the outcome of the experiments related
to this problem. These results show what will be a com-
mon characteristic of all the results presented here. In low
dimensionality, in particular with M = 3, none of the models
yielded substantially different results as illustrated in Fig. 3a.
Better results could possibly be achieved by further tuning
the parameters. However, this situation gradually changes as
the number of objectives increases (see Figs. 3b–3d). In these
cases, the least robust approaches (statistically speaking), such
as the leader algorithm, GNG and MB–GNG, outperform the
others in terms of approximation to the Pareto–optimal front,
with the exception of the 7-objective case, where Bayesian
networks outperform the other algorithms. This is a result that
could be attributed to the fact that this is a separable problem.
This outcome can be verified by looking at the statistical
hypothesis test results shown in Fig. 3g.

Another illustrative analysis emerges when analyzing the
mean number of floating-point operations and the number of
function evaluations shown in Figs. 3e and 3f. Let us draw
attention in the first figure to the fact that EM, Bayesian
networks and CMA–ES consume far more resources and
exhibit poorer scaling properties with regard to the other
algorithms even with respect to the standard MOEAs used
for a baseline comparison. The fact that such a rise in the
computational demand of those algorithms did not lead to an
increase in the number of function evaluations is even more
interesting. Therefore, this increase in the computational cost
was not caused by an increase in the amount of searching
done; instead, it can be attributed to just the creation of the
data models.

WFG5 is also a separable problem but it has a set of
deceptive locally optimal fronts. This feature is meant to
evaluate the capacity of the optimizers to avoid getting trapped
in local optima. Fig. 4 shows the results for this problem. In
spite of the hurdle of the multiple local optima, the results
are quite consistent with those obtained for WFG4. The

scenario that differentiates the three–objective problem from
the other dimensions is repeated here, save that CMA–ES is
the algorithm that yields better solutions in the M = 7 case.
In the other two “high” dimensions, 5 and 9, MB–GNG is
the algorithm that yields the best results. As in WFG4, if
we contrast the floating–point operations and the objective
function evaluations, it is clear that EM, Bayesian networks
and CMA–ES required much more computational time to
perform a similar level of search space exploration.

The next problem, WFG6, is a separable problem without
the strong multi–modality of WFG4. Fig. 5 summarizes the
comparative performances of the different algorithms when
dealing with this problem. In this case, MB–GNG outperforms
the other algorithms in terms of Pareto optimality in all the
high–dimensional cases. It is also noticeable that Bayesian
networks yield similar results to non–statistically rigorous
algorithms. This can be attributed to problem separability. The
pattern of floating–point operations and function evaluations
relations already discussed in the previous problems is also
present here.

The remaining three problems have the added difficulty
of having a parameter–based bias. WFG7 is uni–modal and
separable, like WFG4 and WFG6. Its results are reported in
Fig. 6. In this case, GNG and MB–GNG outperform their peers
in the problems with 5 and 7 objectives. However, Bayesian
networks yielded better average results when tackling the
problem with 9 objectives, although this improvement was not
deemed as statistically significant.

WFG8 is a non–separable problem and its results are
illustrated in Fig. 7. So far, this is the problem where non–
rigorous algorithms most obviously outperformed the others
with a more solid statistical foundation in the higher dimen-
sionality (in objective function space). In the nine–objective
case (Fig. 7d) there seems to be little difference among the
results of the leader algorithm, CMA–ES, GNG and MB–
GNG. However, the much higher cost of running CMA–ES
than the other three approaches is much clearer from the results
shown in Fig. 7e.

Finally, WFG9 is non–separable, multi–modal and has
deceptive local–optima. These properties make WFG9 the
hardest problem of all the problems chosen for the study.
Fig. 8 shows the results obtained with the tested algorithms.
As in the previous experiments, MB–GNG manages to yield
the best results, in this case, sharing its success with the leader
algorithm in the nine- objective case.

Looking at this relatively large set of results, even in the
light of the most advantageous representation chosen, they
are rather cumbersome. First of all, it is noticeable that there
is no clear winner in the three- objective problems, where
the different model–building algorithms alternately outperform
each other. This changes as the number of objectives is
increased. Noticeably, model–building approaches that rely on
solid statistical foundations, such as Bayesian networks, EM,
or CMA–ES are outperformed by the others without such
properties. In terms of computational cost, we find that, while
the overall number of function evaluations remained within
similar ranges for the different algorithms, the effort expended
on model building was far greater for EM, CMA–ES and the
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(f) Objective function evaluations.

(g) INSTANCES WITH STATISTICALLY SIGNIFICANT BETTER RE-
SULTS.

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

Ldr — 3, 5 5, 7 5 5, 9 7 5, 7, 9 5, 7, 9
k-ms — 7, 9 5, 7, 9 7 5, 7, 9 5, 7, 9
EM — 9 5, 7, 9 5, 7, 9

Bays — 5, 7, 9 7 3 5, 7, 9 5, 7, 9
CMA — 3, 7 3 3, 5, 7, 9 3, 5, 7, 9
GNG — 5, 7, 9 5, 7, 9
MBG — 5, 7, 9 5, 7, 9
NSII — 5

SPE2 —

Figure 3: Results for problem WFG4 of applying for model–building the randomized leader algorithm (Ldr), the k–means (k-
ms) algorithm, expectation maximization (EM), Bayesian networks (Bays), covariance matrix adaptation evolutionary strategy
(CMA), growing neural gas network (GNG) and the model–building growing neural gas network (MBG). For comparison
reasons NSGA–II (NSII) and SPEA2 (SPE2) evolutionary algorithms are also shown. Figs. (a)–(d) summarize the statistical
description of the hypervolume values obtained after each experiment as box–plots. Fig. (e) shows the progression across
problem dimensions of the floating–point operations used by the model–building algorithms, while Fig. (f) contain a similar
representation but for the number of function evaluations. Table (g) summarizes the outcome of performing the statistical
hypothesis tests. The numbers shown are the problem dimension where the test detected a statistically significant better
indicator values of the algorithm in each row with respect of those in the columns.

Bayesian networks.

D. Analyzing the Results

It is not easy to assess these facts, as it implies cross–
examining and comparing the results presented separately in
Figs. 3–8. For this reason, we decided to adopt a more inte-
grative representation along the lines of the schema proposed
in [109], [110].

That is, for a given set of algorithms A1,. . . , AK , a set of
P test problem instances Φ1,m,. . . ,ΦP,m, configured with m
objectives, the function δ(·) is defined as

δ (Ai, Aj ,Φp,m) =

{
1 if Ai � Aj solving Φp,m

0 in other case
, (5)

where the relation Ai � Aj defines whether Ai is significantly
better than Aj when solving the problem instance Φp,m, as
computed by the above statistical tests.

Relying on δ(·), the performance index Pp,m(Ai) of a given

algorithm Ai when solving Φp,m is then computed as

Pp,m (Ai) =

K∑
j=1;j 6=i

δ (Ai, Aj ,Φp,m) . (6)

This index should summarize the performance of each algo-
rithm with regard to its peers.

Fig. 9 exhibits the results computing the performance
indexes. Fig. 9a represents the mean performance indexes
yielded by each algorithm when solving each problem in all
of its configured objective dimensions,

P̄p (Ai) =
1

|M|
∑

m∈M
Pp,m (Ai) . (7)

We have not included NSGA–II and SPEA2 in the plots as
they were clearly outperformed by the other algorithms, and
would, therefore, not be useful for presenting results. Never-
theless, their results were used to compute the performance
indexes.

It is worth noticing that GNG and MB–GNG have better
overall results than the other algorithms. It is somewhat
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(f) Objective function evaluations.

(g) INSTANCES WITH STATISTICALLY SIGNIFICANT BETTER RE-
SULTS.

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

Ldr — 5, 9 3 5, 7, 9 5, 7, 9
k-ms — 5, 7, 9 3 5, 7, 9 5, 7, 9

EM — 5, 9 5, 7, 9 5, 7, 9
Bays — 5, 7, 9 3 3, 5, 7, 9 3, 5, 7, 9

CMA — 3 3 3, 5, 7, 9 3, 5, 7, 9
GNG — 3 5, 7, 9 5, 7, 9
MBG — 5, 7, 9 5, 7, 9
NSII —

SPE2 —

Figure 4: Results when solving the WFG5 problem. See Fig 3 for a description of each subfigure and abbreviations.

unexpected that the randomized leader and the k–means algo-
rithms do not have a very good overall performance for some
problems, like WFG5 and WFG7 for the randomized leader
and WFG8 and WFG9 k–means. A possible hypothesis is that
these results may be biased by the three-objective problems,
where there are sizable differences compared with the results
of the other dimensions.

This situation is clarified in Fig. 9b, which presents the
mean values of the index computed for each dimension

P̄m (Ai) =
1

P

P∑
p=1

Pp,m (Ai) . (8)

There is evidence that there is no substantial difference
between the results yielded by the different algorithms in the
three-objective case, as their index values are more uniform.
It is also noticeable that CMA–ES seems to outperform
all the other algorithms for all problems in this dimension.
This panorama changes when inspecting the results in higher
dimensionality (in the objective function space). In those
cases the least statistically robust algorithms tend to perform
comparatively better, with the exception of Bayesian networks
that seem to improve as the number of dimensions increases,
but, of course, at the expense of a great computational cost.

It is worthwhile analyzing the performance of MB–GNG.
In most cases, MB–GNG outperformed the other algorithms
in higher dimensionality. This corroborates the results that
we presented elsewhere [55], [113]. This outcome can be
attributed to the fact that MB–GNG is the only algorithm

that has so far been devised especially for the model–building
problem.

V. TOWARDS A PARADIGM SHIFT

The above results prompt a series of considerations that we
believe could be used as the basis for a possible paradigm
shift within MOEDAs. One of the main conclusions is that
model–building algorithms without a solid statistical foun-
dation generally outperform the others for problems with a
dimensionality greater than three (in the objective function
space). These results, therefore, sustain the hypothesis put
forward in Section III. It is now more evident that the model–
building problem has different characteristics to other existing
machine learning problems.

The improvement achieved with the application of MB–
GNG is particularly noteworthy. Although it could be argued
that the custom–designed MB–GNG yields substantially better
results with respect to current alternatives, we find that there
is still a lot of room for improvement in this area. Therefore, a
more fruitful debate would be around how to create algorithms
that are capable of properly dealing with the model–building
issue.

It is indeed true that the curse of dimensionality cannot
be avoided in the long term. Similarly, the no–free–lunch
theorem in the multi–objective case has shown that there will
be no universal multi–objective optimizer that outperforms
all the other algorithms in all cases [114]. However, if we
analyze the issues debated in this paper and in the light of the
experimental results presented here, we can point out different
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(f) Objective function evaluations.

(g) INSTANCES WITH STATISTICALLY SIGNIFICANT BETTER
RESULTS.

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

Ldr — 7, 9 5 5, 9 5, 7, 9 5, 7, 9
k-ms — 5, 9 5 5, 9 5, 7, 9 5, 7, 9
EM — 5 5, 7, 9 5, 7, 9

Bays — 5, 9 5, 7, 9 5, 7, 9
CMA — 5, 7, 9 5, 7, 9
GNG — 5, 7, 9 5, 7, 9
MBG — 5, 7, 9 5, 7, 9
NSII — 5

SPE2 —

Figure 5: Results when solving the WFG6 problem. See Fig 3 for a description of each subfigure and abbreviations.

directions that may be pursued in order to achieve a substantial
improvement in the MOEDA area.

As stated previously, one of the main causes of the current
limitations of MOEDAs can, in our opinion, be attributed to
their disregard of outliers. In turn, this behavior can be put
down to the error–based learning approaches that take place
in the underachieving MOEDAs.

Error–based learning is rather common in most machine
learning algorithms. It implies that model topology and param-
eters are tuned in order to minimize a global error measured
across the learning data set. This type of learning of isolated
data is not taken into account because these data contribute
little to the overall error and, therefore, do not take an active
part in the learning process.

This behavior makes sense in the context of many problems,
as isolated data can be interpreted as being spurious, noisy
or invalid. As we argued in Section III, however, this is not
the case in model–building. In model–building, all data are
equally important, and, furthermore, isolated data might have
a greater significance as they represent unexplored regions of
the current optimal search space. This assessment is supported
by the fact that most of the better-performing approaches do
not follow the error–based scheme. For this reason, perhaps
another class of learning, such as instance–based learning
(IBL) [115], [116] or match–based learning [117] would yield
a sizable advantage. As a matter of fact, the leader and k–
means algorithms are good representatives of IBL.

Another strategy of interest is the fusion of the information
present in both the decision variable space and objective

function space. Most MOEDAs construct their models by
exploiting only the decision variable space information, since
the resulting model can be used for sampling new individuals.
To the best of our knowledge, the only MOEDA work that has
addressed this issue is related to the use of the multi–objective
hierarchical BOA (mhBOA) [16], [31]. MhBOA performs a
k–means clustering of the local Pareto front obtained after
applying the NSGA–II ranking function. Then, a local model
is built for each cluster. It is worth remarking that a simpler
approach would be to replace the NSGA–II’s ranking function
for one based on SPEA2, which has an embedded clustering
process. Nevertheless, the underlying idea here is that the
model would benefit from taking into account the properties
of the individuals in both spaces.

Model reuse across iterations is another important issue.
The most popular approaches so far either (i) create and later
discard new models in every iteration or (ii) infer some of
the most costly properties (such as the network topology in
Bayesian networks) beforehand and tune the others in each
iteration.

The first solution has the obvious drawback of wasting
resources when large parts of the model are likely to be
able to be reused across iterations. On the other hand, the
other approach does not take into account the evolution of
the local Pareto–optimal front and set as the optimization
process progresses. To get MOEDAs with better scalability,
the model–building algorithms must be able to handle some
degree of reusability and, therefore, minimize the amount of
computation carried out in each iteration.
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(f) Objective function evaluations.

(g) INSTANCES WITH STATISTICALLY SIGNIFICANT BETTER RE-
SULTS.

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

Ldr — 5 5, 7 5 5, 9 5, 7, 9 5, 7, 9
k-ms — 7 5, 9 5, 7, 9 5, 7, 9
EM — 5, 9 5, 7, 9 5, 7, 9

Bays — 5, 9 5, 7, 9 5, 7, 9
CMA — 3 3, 5, 7, 9 5, 7, 9
GNG — 5, 7, 9 5, 7, 9
MBG — 5, 7, 9 5, 7, 9
NSII —

SPE2 —

Figure 6: Results when solving the WFG7 problem. See Fig 3 for a description of each subfigure and abbreviations.

H
yp

er
vo

lu
m

e

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

(a) M = 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

(b) M = 5

0.2

0.4

0.6

0.8

1

1.2

1.4

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

(c) M = 7

0

0.5

1

1.5

2

2.5

3

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

(d) M = 9

Fl
oa

tin
g–

po
in

t
op

s.

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

10
6

10
7

(e) Floating–point CPU operations dedi-
cated to model–building.

E
va

lu
at

io
ns

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

10
5

10
6

10
7

10
8

(f) Objective function evaluations.

(g) INSTANCES WITH STATISTICALLY SIGNIFICANT BETTER
RESULTS.

Ldr k-ms EM Bays CMA GNG MBG NSII SPE2

Ldr — 9 7, 9 5, 7, 9 7 5, 7, 9 5, 7, 9
k-ms — 7 5, 7 7 7 5, 7, 9 5, 7, 9
EM — 5, 7, 9 5, 7, 9

Bays — 5, 7, 9 5, 7, 9
CMA — 5, 7, 9 5, 7, 9
GNG — 5, 7, 9 5, 7, 9
MBG — 5, 7, 9 5, 7, 9
NSII — 3, 7

SPE2 —

Figure 7: Results when solving the WFG8 problem. See Fig 3 for a description of each subfigure and abbreviations.
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(g) INSTANCES WITH STATISTICALLY SIGNIFICANT BETTER RESULTS.
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Figure 8: Results when solving the WFG9 problem. See Fig 3 for a description of each subfigure and abbreviations.
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Figure 9: Mean values of the performance index across the different problems, P̄p (), (Fig. (a)) and objective space dimensions,
P̄m (Fig. (b)).

In any case, it is clear from the above discussions and
experiments that the model–building problem warrants a dif-
ferent approach that takes into account the particularities of
the problem being solved. The ultimate solution to this issue
is, perhaps, to create custom–made algorithms that meet the
specific requirements of the problem at hand.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed an important issue in current
evolutionary multi–objective optimization: how to build algo-

rithms that have better scalability with regard to the number
of objectives. In particular, we have focused on one promising
set of approaches: estimation of distribution algorithms.

We have argued that most of the current approaches do
not take into account the particularities of the model–building
problem that they are addressing and that, for this reason, they
fail to yield results of substantial quality.

We have also carried out a set of experiments that showed
the points being discussed. The experiments illustrated em-
pirically that algorithms that have no statistical groundwork
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Table I: Parameters of the algorithms used in the experiments.
Common parameters

Population size (npop) 250 · 10
M
3

−1

Shared EDA framework

Selection percentile (α) 0.3
Substitution percentile (ω) 0.3

GNG and MB–GNG

Number of initial GNG nodes (N0) 2
Maximum edge age (νmax) 40
Best node learning rate (εb) 0.1

Neighbor nodes learning rate (εv) 0.05
Insertion error decrement rate (δI) 0.1
General error decrement rate (δG) 0.1

Accumulated error threshold (ρ) 0.2

P̂t to Nmax ratio (γ) 0.5

Randomized leader algorithm

Maximum number of clusters d0.5bαnpopce
Threshold for the leader algorithm 0.1

k–means algorithm

Number of clustersd0.25bτnpopce
Stopping threshold 0.0001

Expectation maximization

Maximum number of clusters d0.5bτnpopce
Threshold for the leader algorithm 0.1

Bayesian networks

Number of parents or a variable 5
Number of mixture components 3

Threshold of leader algorithm 0.1

Covariance matrix adaptation

Offspring number (λ) 1

Target success probability (ptargetsucc ) 1

5+
√
λ
2

Step size damping (d) 1 + n
2λ

Success rate averaging parameter (cp) λptargetsucc

2+p
target
succ

Cumulation time horizon parameter (cc) 2
n+2

Covariance matrix learning rate (ccov) 2
n2+6

Success rate threshold (pthresh) 0.44

NSGA–II

Crossover probability (pc) 0.7
Distribution index for SBX (ηc) 15

Mutation probability (pm) 1
npop

Dist. index for polynomial mut. (ηm) 20

SPEA2

Crossover probability (pc) 0.7
Distribution index for SBX (ηc) 15

Mutation probability (pm) 1
npop

Dist. index for polynomial mut. (ηm) 20
Ratio of pop. to archive sizes 4 : 1

outperformed others that do. According to the hypothesis put
forward in this paper, such behavior is caused by the fact
that model–building has not yet been recognized as different
from typical machine learning problems and, as such, having
specific requirements that need to be met. The main aim of this
paper is to trigger further studies on this topic and, ultimately,
new model–building algorithms.
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[1] V. Pareto, Cours D’Économie Politique. Lausanne: F. Rouge, 1896.
[2] K. Miettinen, Nonlinear Multiobjective Optimization, ser. International

Series in Operations Research & Management Science. Norwell, MA:
Kluwer, 1999, vol. 12.

[3] M. Ehrgott, Multicriteria Optimization, ser. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, 2005, vol. 491.

[4] R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization
of many conflicting objectives,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 770–784, 2007. [Online]. Available:
http://dx.doi.org/10.1109/TEVC.2007.910138

[5] O. Brandte and S. Malinchik, “A Broad and Narrow Approach to
Interactive Evolutionary Design - An Aircraft Design Example,” in
Genetic and Evolutionary Computation–GECCO 2004. Proceedings of
the Genetic and Evolutionary Computation Conference. Part II, K. D.
et al., Ed. Seattle, Washington, USA: Springer–Verlag, Lecture Notes
in Computer Science Vol. 3103, June 2004, pp. 883–895.

[6] T. J. Stewart, R. Janssen, and M. van Herwijnen, “A genetic algorithm
approach to multiobjective land use planning,” Computers and Opera-
tions Research, vol. 32, pp. 2293–2313, 2004.

[7] J. A. Besada, J. Garcı́a, G. De Miguel, A. Berlanga, J. M. Molina, and
J. R. Casar, “Design of IMM filter for radar tracking using evolution
strategies,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 41, no. 3, pp. 1109–1122, July 2005.

[8] J. Garcı́a, A. Berlanga, and J. M. Molina, “Effective evolutionary
algorithms for many–specifications attainment: Application to air
traffic control tracking filters,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 1, pp. 151–168, 2009. [Online]. Available:
http://dx.doi.org/10.1109/TEVC.2008.920677

[9] H. Nakayama, S. Kaneshige, S. Takemoto, and Y. Watada, “An ap-
plication of a multi–objective programming technique to construction
accuracy control of cable–stayed bridges,” European Journal of Oper-
ational Research, vol. 87, pp. 731—738, 1995.

[10] T. J. Stewart, O. Bandte, H. Braun, N. Chakraborti, M. Ehrgott,
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